
With the Calculus as a key, Mathematics can be successfully applied to the
explanation of the course of Nature – WHITEHEAD 

13.1  Introduction
This chapter is an introduction to Calculus. Calculus is that
branch of mathematics which mainly deals with the study
of change in the value of a function as the points in the
domain change. First, we give an intuitive idea of derivative
(without actually defining it). Then we give a naive definition
of limit and study some algebra of limits. Then we come
back to a definition of derivative and study some algebra
of derivatives. We also obtain derivatives of certain
standard functions.

13.2  Intuitive Idea of Derivatives
Physical experiments have confirmed that the body dropped
from a tall cliff covers a distance of 4.9t2 metres in t seconds,
i.e., distance s in metres covered by the body as a function of time t in seconds is given
by s = 4.9t2.

The adjoining Table 13.1 gives the distance travelled in metres at various intervals
of time in seconds of a body dropped from a tall cliff.

The objective is to find the veloctiy of the body at time t = 2 seconds from this
data. One way to approach this problem is to find the average velocity for various
intervals of time ending at t = 2 seconds and hope that these throw some light on the
velocity at t = 2 seconds.

Average velocity between t = t1 and t = t2 equals distance travelled between
 t = t1 and t = t2  seconds divided by  (t2 – t1). Hence the average velocity in the first
two seconds
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Similarly, the average velocity between t = 1
 and t = 2 is
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= 14.7 m/s

Likewise we compute the average velocitiy
between t = t1 and t = 2 for various t1. The following
Table 13.2 gives the average velocity (v), t = t1

seconds and t = 2 seconds.

Table 13.2

t1 0 1 1.5 1.8 1.9 1.95 1.99

v 9.8 14.7 17.15 18.62 19.11 19.355 19.551

From Table 13.2, we observe that the average velocity is gradually increasing.
As we make the time intervals ending at t = 2 smaller, we see that we get a better idea
of the velocity at t = 2. Hoping that nothing really dramatic happens between 1.99
seconds and 2 seconds, we conclude that the average velocity at t = 2 seconds is just
above 19.551m/s.

This conclusion is somewhat strengthened by the following set of computation.
Compute the average velocities for various time intervals starting at t = 2 seconds. As
before the average velocity v between t = 2 seconds and t = t2 seconds is

= 2
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Distance  travelled between 2 seconds and seconds
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t
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Distance  travelled in seconds  Distance travelled in 2 seconds
2

t
t
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t s
0 0
1 4.9
1.5 11.025
1.8 15.876
1.9 17.689
1.95 18.63225
2 19.6
2.05 20.59225
2.1 21.609
2.2 23.716
2.5 30.625
3 44.1
4 78.4

Table 13.1
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The following Table 13.3 gives the average velocity v in metres per second
between t = 2 seconds and t2 seconds.

Table 13.3

t2    4    3  2.5   2.2   2.1   2.05       2.01

v 29.4 24.5   22.05 20.58 20.09 19.845    19.649

Here again we note that if we take smaller time intervals starting at t = 2, we get
better idea of the velocity at t = 2.

In the first set of computations, what we have done is to find average velocities
in increasing time intervals ending at t = 2 and then hope that nothing dramatic happens
just before t = 2. In the second set of computations, we have found the average velocities
decreasing in time intervals ending at t = 2 and then hope that nothing dramatic happens
just after t = 2. Purely on the physical grounds, both these sequences of average
velocities must approach a common limit. We can safely conclude that the velocity of
the body at t = 2 is between 19.551m/s and 19.649 m/s. Technically, we say that the
instantaneous velocity at t = 2 is between 19.551 m/s and 19.649 m/s. As is
well-known, velocity is the rate of change of distance. Hence what we have
accomplished is the following. From the given data of distance covered at various time
instants we have estimated the rate of
change of the distance at a given instant
of time. We say that the derivative of
the distance function s = 4.9t2 at t = 2
is between 19.551 and 19.649.

An alternate way of viewing this
limiting process is shown in Fig 13.1.
This is a plot of distance s of the body
from the top of the cliff versus the time
t elapsed. In the limit as the sequence
of time intervals h1, h2, ..., approaches
zero, the sequence of average velocities
approaches the same limit as does the
sequence of ratios Fig 13.1
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where C1B1 = s1 – s0 is the distance travelled by the body in the time interval h1 = AC1,
etc. From the Fig 13.1 it is safe to conclude that this latter sequence approaches the
slope of the tangent to the curve at point A. In other words, the instantaneous velocity
v(t) of a body at time t = 2 is equal to the slope of the tangent of the curve s = 4.9t2 at
t = 2.

13.3 Limits
The above discussion clearly points towards the fact that we need to understand limiting
process in greater clarity. We study a few illustrative examples to gain some familiarity
with the concept of limits.

Consider the function f(x) = x2. Observe that as x takes values very close to 0,
the value of f(x) also moves towards 0 (See Fig 2.10 Chapter 2). We say

( )
0

lim 0
x

f x
→

=

(to be read as limit of f (x) as x tends to zero equals zero).  The limit of f (x) as x tends
to zero is to be thought of as the value f (x) should assume at x = 0.

In general as x → a, f (x) → l, then l is called limit of the function f (x) which is

symbolically written as ( )lim
x a

f x l
→

= .

Consider the following function g(x) = |x|, x ≠ 0. Observe that g(0) is not defined.
Computing the value of g(x) for values of x very
near to 0, we see that the value of g(x) moves

towards 0. So, 0
lim
x→  g(x) = 0. This is intuitively

clear from the graph of y = |x| for x ≠ 0.
(See Fig 2.13, Chapter 2).

Consider the following function.

( )
2 4 , 2

2
xh x x
x
−

= ≠
−

.

Compute the value of h(x) for values  of
x very near to 2 (but not at 2). Convince yourself
that all these values are near to 4. This is
somewhat strengthened by considering the graph
of the function y = h(x) given here (Fig 13.2). Fig 13.2
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In all these illustrations the value which the function should assume at a given
point x = a did not really depend on how is x tending to a. Note that there are essentially
two ways x could approach a number a  either from left or from right, i.e., all the
values of x near a could be less than a or could be greater than a. This naturally leads
to two limits – the right hand limit and the left hand limit. Right hand limit of a
function f(x) is that value of f(x) which is dictated by the values of f(x) when x tends
to a from the right. Similarly, the left hand limit. To illustrate this, consider the function

( ) 1, 0
2, 0

x
f x

x
≤⎧

= ⎨ >⎩

Graph of this function is shown in the Fig 13.3. It is
clear that the value of f at 0 dictated by values of f(x) with
x ≤ 0 equals 1, i.e., the left hand limit of f (x) at 0 is

0
lim ( ) 1
x

f x
→

= .

Similarly, the value of f at 0 dictated by values of
f (x) with x > 0 equals 2., i.e., the right hand limit of f (x)
at 0 is

0
lim ( ) 2
x

f x
+→

= .

In this case the right and left hand limits are different, and hence we say that the
limit of f (x) as x tends to zero does not exist (even though the function is defined at 0).

Summary

  We say lim
x a→ –  f(x) is the expected value of  f at x = a given the values of f near

x to the left of a. This value is called the left hand limit of f at a.

We say lim ( )
x a

f x
+→

 is the expected value f at x = a given the values of

f near x to the right of a. This value is called the right hand limit of f(x) at a.
If the right and left hand limits coincide, we call that common value as the limit

of f(x) at x = a and denote it by lim
x a→  f(x).

Illustration 1 Consider the function f(x) = x + 10. We want to find the limit of this
function at x = 5. Let us compute the value of the function f(x) for x very near to 5.
Some   of the points near and to the left of 5 are 4.9, 4.95, 4.99, 4.995. . ., etc. Values
of the function at these points are tabulated below. Similarly, the real number 5.001,

Fig 13.3
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5.01, 5.1 are also points near and to the right of 5. Value of the function at these points
are also given in the Table 13.4.

Table 13.4

From the Table 13.4, we deduce that value of f(x) at x = 5 should be greater than
14.995 and less than 15.001 assuming nothing dramatic happens between x = 4.995
and 5.001. It is reasonable to assume that the value of the f(x) at x = 5 as dictated by
the numbers to the left of 5 is 15, i.e.,

( )
–5

lim 15
x

f x
→

= .

Similarly, when x approaches 5 from the right,  f(x) should be taking value 15, i.e.,

( )
5

lim 15
x

f x
+→

= .

Hence, it is likely that the left hand limit of f(x) and the right hand limit of f(x) are
both equal to 15. Thus,

( ) ( ) ( )
55 5

lim lim lim 15
xx x

f x f x f x
− + →→ →

= = = .

This conclusion about the limit being equal to 15 is somewhat strengthened by
seeing the graph of this function which is given in Fig 2.16, Chapter 2. In this figure, we
note that as x appraches 5 from either right or left, the graph of the function
f(x) = x +10 approaches the point (5, 15).

We observe that the value of the function at x = 2 also happens to be equal to 12.

Illustration 2 Consider the function f(x) = x3. Let us try to find the limit of this
function at x = 1. Proceeding as in the previous case, we tabulate the value of f(x) at
x near 1. This is given in the Table 13.5.

Table 13.5

From this table, we deduce that value of f(x) at x = 1 should be greater than
0.997002999 and less than 1.003003001 assuming nothing dramatic happens between

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x) 0.729 0.970299 0.997002999 1.003003001 1.030301 1.331

x 4.9 4.95 4.99 4.995 5.001 5.01 5.1

f(x) 14.9 14.95 14.99 14.995 15.001 15.01 15.1
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x = 0.999 and 1.001. It is reasonable to assume that the value of the f(x) at x = 1 as
dictated by the numbers to the left of 1 is 1, i.e.,

( )
1

lim 1
x

f x
−→

= .
Similarly, when x approaches 1 from the right, f(x) should be taking value 1., i.e.,

( )
1

lim 1
x

f x
+→

= .
Hence, it is likely that the left hand limit of f(x) and the right hand limit of f(x) are

both equal to 1. Thus,

( ) ( ) ( )
11 1

lim lim lim 1
xx x

f x f x f x
− + →→ →

= = = .
This conclusion about the limit being equal to 1 is somewhat strengthened by

seeing the graph of this function which is given in Fig 2.11, Chapter 2. In this figure, we
note that as x approaches 1 from either right or left, the graph of the function
f(x) = x3 approaches the point (1, 1).

We observe, again, that the value of the function at x = 1 also happens to be
equal to 1.

Illustration 3 Consider the function f(x) = 3x. Let us try to find the limit of this
function at x = 2. The following Table 13.6 is now self-explanatory.

Table 13.6

x 1.9 1.95 1.99 1.999 2.001 2.01 2.1

f(x) 5.7 5.85 5.97 5.997 6.003 6.03 6.3

As before we observe that as x  approaches 2
from either left or right, the value of f(x) seem to
approach 6. We record this as

( ) ( ) ( )
22 2

lim lim lim 6
xx x

f x f x f x
− + →→ →

= = =

Its graph shown in Fig 13.4 strengthens this
fact.

Here again we note that the value of the function
at x = 2 coincides with the limit at x = 2.

Illustration 4 Consider the constant function
f(x) = 3. Let us try to find its limit at x = 2. This
function being the constant function takes the same Fig 13.4
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value (3, in this case) everywhere, i.e., its value at points close to 2 is 3. Hence

( ) ( ) ( )
2 22

lim lim lim 3
x xx

f x f x f x
+→ →→

= = =

Graph of f(x) = 3 is anyway the line parallel to x-axis passing through (0, 3) and
is shown in Fig 2.9, Chapter 2. From this also it is clear that the required limit is 3. In

fact, it is easily observed that ( )lim 3
x a

f x
→

=  for any real number a.

Illustration 5 Consider the function f(x) = x2 + x. We want to find ( )
1

lim
x

f x
→

. We

tabulate the values of f(x) near x = 1 in Table 13.7.

Table 13.7

x 0.9 0.99 0.999 1.01 1.1 1.2

f(x) 1.71 1.9701 1.997001 2.0301 2.31 2.64

From this it is reasonable to deduce that

( ) ( ) ( )
11 1

lim lim lim 2
xx x

f x f x f x
− + →→ →

= = = .

From the graph of f(x) = x2 + x
shown in the Fig 13.5,  it is clear that as x
approaches 1, the graph approaches (1, 2).

Here, again we observe that the

1
lim
x→  f (x) = f (1)

Now, convince yourself of the
following three facts:

2

1 1 1
lim 1, lim 1 and lim 1 2
x x x

x x x
→ → →

= = + =

Then 2 2

1 1 1
lim lim 1 1 2 lim
x x x

x x x x
→ → →

⎡ ⎤+ = + = = +⎣ ⎦ .

Also ( ) ( ) 2

1 1 1 1
lim . lim 1 1.2 2 lim 1 lim
x x x x

x x x x x x
→ → → →

⎡ ⎤⎡ ⎤+ = = = + = +⎣ ⎦ ⎣ ⎦ .

Fig 13.5
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Illustration 6 Consider the function f(x) = sin x.  We are interested in 
2

lim sin
x

x
π→

,

where the angle is measured in radians.

Here, we tabulate the (approximate) value of f(x) near 2
π

(Table 13.8). From

this, we may deduce that

( ) ( ) ( )
22 2

lim lim lim 1
xx x

f x f x f x
− + ππ π →→ →

= = =
.

Further, this is supported by the graph of f(x) = sin x which is given in the Fig 3.8

(Chapter 3). In this case too, we observe that 
2

lim
x π→

 sin x = 1.

Table 13.8

x 0.1
2
π
− 0.01

2
π
− 0.01

2
π
+ 0.1

2
π
+

f(x) 0.9950 0.9999 0.9999 0.9950

Illustration 7 Consider the function f(x) = x + cos x. We want to find the 
0

lim
x→

f (x).

Here we tabulate the (approximate) value of f(x) near 0 (Table 13.9).

Table 13.9

From the Table 13.9, we may deduce that

( ) ( ) ( )
00 0

lim lim lim 1
xx x

f x f x f x
− + →→ →

= = =

In this case too, we observe that 
0

lim
x→

f (x) = f (0) = 1.

Now, can you convince yourself that

[ ]
0 0 0

lim cos lim lim cos
x x x

x x x x
→ → →

+ = +  is indeed true?

x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1

f(x) 0.9850 0.98995 0.9989995 1.0009995 1.00995 1.0950
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Illustration 8 Consider the function ( ) 2
1f x
x

=  for 0x > . We want to know 
0

lim
x→

f (x).

Here, observe that the domain of the function is given to be all positive real
numbers. Hence, when we tabulate the values of f(x), it does not make sense to talk of
x approaching 0 from the left. Below we tabulate the values of the function for positive
x close to 0 (in this table n denotes any positive integer).

From the Table 13.10 given below, we see that as x tends to 0, f(x) becomes
larger and larger. What we mean here is that the value of f(x) may be made larger than
any given number.

Table 13.10

x 1 0.1 0.01 10–n

f(x) 1 100 10000 102n

Mathematically, we say

( )
0

lim
x

f x
→

= +∞

We also remark that we will not come across such limits in this course.

Illustration 9 We want to find ( )
0

lim
x

f x
→

, where

( )
2, 0

0 , 0
2, 0

x x
f x x

x x

− <⎧
⎪= =⎨
⎪ + >⎩

As usual we make a table of x near 0 with f(x). Observe that for negative values of x
we need to evaluate x – 2 and for positive values, we need to evaluate x + 2.

Table 13.11

From the first three entries of the Table 13.11, we deduce that the value of the
function is decreasing to –2 and hence.

( )
0

lim 2
x

f x
−→

= −

x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1

f(x) – 2.1 – 2.01 – 2.001 2.001 2.01 2.1
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From the last three entires of the table we deduce that the value of the function
is increasing from 2 and hence

( )
0

lim 2
x

f x
+→

=

Since the left and right hand limits at 0 do not coincide,
we say that the limit of the function at 0 does not exist.

  Graph of this function is given in the Fig13.6. Here,
we remark that the value of the function at x = 0 is well
defined and is, indeed, equal to 0, but the limit of the function
at x = 0 is not even defined.

Illustration 10 As a final illustration, we find ( )
1

lim
x

f x
→

,

where

( ) 2 1
0 1

x x
f x

x
+ ≠⎧

= ⎨ =⎩

Table 13.12

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x) 2.9 2.99 2.999 3.001 3.01 3.1

As usual we tabulate the values of f(x) for x near 1. From the values of f(x) for
x less than 1, it seems that the function should take value 3 at x = 1., i.e.,

( )
1

lim 3
x

f x
−→

= .

Similarly, the value of f(x) should be 3 as
dictated by values of f(x) at x greater than 1. i.e.

( )
1

lim 3
x

f x
+→

= .

But then the left and right hand limits coincide
and hence

        ( ) ( ) ( )
11 1

lim lim lim 3
xx x

f x f x f x
− + →→ →

= = = .

Graph of function given in Fig 13.7 strengthens
our deduction about the limit. Here, we

Fig 13.6

Fig 13.7
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note that  in general, at a given point the value of the function and its limit may be
different (even when both are defined).

13.3.1  Algebra of limits In the above illustrations, we have observed that the limiting
process respects addition, subtraction, multiplication and division as long as the limits
and functions under consideration are well defined. This is not a coincidence. In fact,
below we formalise these as a theorem without proof.

Theorem 1 Let f  and g be two functions such that both lim
x a→

 f (x) and  lim
x a→

 g(x) exist.

Then
  (i) Limit of sum of two functions is sum of the limits of the functions, i.e.,

lim
x a→

[f(x) + g (x)] =  lim
x a→

 f(x) +  lim
x a→

 g(x).

 (ii) Limit of difference of two functions is difference of the limits of the functions, i.e.,

lim
x a→

[f(x) – g(x)] =  lim
x a→

 f(x) –  lim
x a→

 g(x).

(iii) Limit of product of two functions is product of the limits of the functions, i.e.,

lim
x a→

 [f(x) . g(x)] =  lim
x a→

 f(x).  lim
x a→

 g(x).

(iv) Limit of quotient of two functions is quotient of the limits of the functions (whenever
the denominator is non zero), i.e.,

( )
( )

( )
( )

lim
lim

lim
x a

x a
x a

f xf x
g x g x

→

→
→

=

Note In particular as a special case of (iii), when g is the constant function
such that  g(x) = λ , for some real number λ , we have

( ) ( ) ( )lim . .lim
x a x a

f x f x
→ →

⎡ ⎤λ = λ⎣ ⎦ .

In the next two subsections, we illustrate how to exploit this theorem to evaluate
limits of special types of functions.

13.3.2  Limits of polynomials and rational functions A function f is said to be a
polynomial function if f(x) is zero function or if f(x) = a0 + a1x + a2x2 +. . . + anxn,
where ais are real numbers such that an ≠ 0 for some natural number n.

We know that lim
x a→

x = a. Hence
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( )2 2lim lim . lim .lim .
x a x a x a x a

x x x x x a a a
→ → → →

= = = =

An easy exercise in induction on n tells us that

lim n n

x a
x a

→
=

Now, let ( ) 2
0 1 2 ... n

nf x a a x a x a x= + + + +  be a polynomial function. Thinking

of each of 2
0 1 2, , ,..., n

na a x a x a x  as a function, we have

( )lim
x a

f x
→

= 2
0 1 2lim ... n

nx a
a a x a x a x

→
⎡ ⎤+ + + +⎣ ⎦

= 2
0 1 2lim lim lim ... lim n

nx a x a x a x a
a a x a x a x

→ → → →
+ + + +

= 2
0 1 2lim lim ... lim n

nx a x a x a
a a x a x a x

→ → →
+ + + +

= 2
0 1 2 ... n

na a a a a a a+ + + +

= ( )f a

(Make sure that you understand the justification for each step in the above!)

A function f is said to be a rational function, if f(x) = 
( )
( )

g x
h x , where g(x) and h(x)

are polynomials such that h(x) ≠ 0. Then

( ) ( )
( )

( )
( )

( )
( )

lim
lim lim

lim
x a

x a x a
x a

g xg x g a
f x

h x h x h a
→

→ →
→

= = =

However, if h(a) = 0, there are two scenarios – (i) when g(a) ≠ 0 and (ii) when
g(a) = 0. In the former case we say that the limit does not exist. In the latter case we
can write g(x) = (x – a)k g1 (x), where k is the maximum of powers of (x – a) in g(x)
Similarly, h(x) = (x – a)l h1 (x) as h (a) = 0. Now, if k ≥ l, we have

( )
( )
( )

( ) ( )
( ) ( )

1

1

lim lim
lim

lim lim

k

x a x a
lx a

x a x a

g x x a g x
f x

h x x a h x
→ →

→
→ →

−
= =

−
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= 
( )( ) ( )

( )
( )
( )

1 1

1 1

lim 0.
0

lim

k l

x a

x a

x a g x g a
h x h a

−

→

→

−
= =

If k < l, the limit is not defined.

Example 1 Find the limits:  (i)  3 2

1
lim 1
x

x x
→
⎡ ⎤− +⎣ ⎦     (ii)  ( )

3
lim 1
x

x x
→
⎡ ⎤+⎣ ⎦

(iii) 2 10

1
lim 1 ...
x

x x x
→−

⎡ ⎤+ + + +⎣ ⎦ .

Solution The required limits are all limits of some polynomial functions. Hence the
limits are the values of the function at the prescribed points. We have

(i) 1
lim
x→  [x3 – x2 + 1] = 13 – 12 + 1 = 1

(ii) ( ) ( ) ( )
3

lim 1 3 3 1 3 4 12
x

x x
→
⎡ ⎤+ = + = =⎣ ⎦

(iii) 2 10

1
lim 1 ...
x

x x x
→−

⎡ ⎤+ + + +⎣ ⎦  ( ) ( ) ( )2 101 1 1 ... 1= + − + − + + −

        1 1 1... 1 1= − + + = .
Example 2 Find the limits:

(i)
2

1

1lim
100x

x
x→

⎡ ⎤+
⎢ ⎥+⎣ ⎦

(ii)
3 2

22

4 4lim
4x

x x x
x→

⎡ ⎤− +
⎢ ⎥

−⎣ ⎦

(iii)
2

3 22

4lim
4 4x

x
x x x→

⎡ ⎤−
⎢ ⎥

− +⎣ ⎦
(iv)

3 2

22

2lim
5 6x

x x
x x→

⎡ ⎤−
⎢ ⎥

− +⎣ ⎦

(v) 2 3 21

2 1lim
3 2x

x
x x x x x→

−⎡ ⎤−⎢ ⎥− − +⎣ ⎦
.

Solution All the functions under consideration are rational functions. Hence, we first

evaluate these functions at the prescribed points. If this is of the form 
0
0 , we try to

rewrite the function cancelling the factors which are causing the limit to be of

the form 
0
0 .
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(i) We have 
2 2

1

1 1 1 2lim
100 1 100 101x

x
x→

+ +
= =

+ +

(ii) Evaluating the function at 2, it is of the form 
0
0 .

Hence
3 2

22

4 4lim
4x

x x x
x→

− +
−

 =
( )

( )( )

2

2

2
lim

2 2x

x x
x x→

−
+ −

=
( )
( )2

2
lim as 2

2x

x x
x

x→

−
≠

+

 =
( )2 2 2 0 0
2 2 4
−

= =
+

.

(iii) Evaluating the function at 2, we get it of the form 
0
0

.

Hence
2

3 22

4lim
4 4x

x
x x x→

−
− +

 =
( )( )

( )22

2 2
lim

2x

x x

x x→

+ −

−

=
( )
( ) ( )2

2 2 2 4lim
2 2 2 2 0x

x
x x→

+ +
= =

− −

which is not defined.

(iv) Evaluating the function at 2, we get it of the form  
0
0 .

Hence
3 2

22

2lim
5 6x

x x
x x→

−
− +

 =
( )

( )( )

2

2

2
lim

2 3x

x x
x x→

−
− −

= ( )
( )22

2

2 4lim 4
3 2 3 1x

x
x→

= = = −
− − − .
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(v) First, we rewrite the function as a rational function.

2 3 2
2 1

3 2
x
x x x x x
−⎡ ⎤−⎢ ⎥− − +⎣ ⎦

 = ( ) ( )2

2 1
1 3 2

x
x x x x x

⎡ ⎤−⎢ ⎥−
⎢ ⎥− − +⎣ ⎦

= ( ) ( )( )
2 1
1 1 2

x
x x x x x

⎡ ⎤−
−⎢ ⎥

− − −⎢ ⎥⎣ ⎦

= ( )( )
2 4 4 1

1 2
x x
x x x

⎡ ⎤− + −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

= ( )( )
2 4 3

1 2
x x

x x x
− +
− −

Evaluating the function at 1, we get it of the form 
0
0

.

Hence
2

2 3 21

2 1lim
3 2x

x
x x x x x→

⎡ ⎤−
−⎢ ⎥

− − +⎣ ⎦
= ( )( )

2

1

4 3lim
1 2x

x x
x x x→

− +
− −

=
( )( )
( )( )1

3 1
lim

1 2x

x x
x x x→

− −
− −

= ( )1

3lim
2x

x
x x→

−
−  = ( )

1 3
1 1 2

−
−  = 2.

We remark that we could cancel the term (x – 1) in the above evaluation because
1x ≠ .

Evaluation of an important limit which will be used in the sequel is given as a
theorem below.
Theorem 2 For any positive integer n,

1lim
n n

n

x a

x a na
x a

−

→

−
=

−
.

Remark The expression in the above theorem for the limit is true even if n is any
rational number and a is positive.
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Proof Dividing (xn – an) by (x – a), we see that

xn – an = (x–a) (xn–1 + xn–2 a + xn–3 a2 + ... + x an–2 + an–1)

Thus, lim lim
n n

x a x a

x a
x a→ →

−
=

−
(xn–1 + xn–2 a + xn–3 a2 + ... + x an–2 + an–1)

= an – l + a an–2 +. . . + an–2 (a) +an–l

= an–1 + an – 1 +...+an–1 + an–1 (n terms)

= 1nna −

Example 3 Evaluate:

(i)  
15

101

1lim
1x

x
x→

−
−

(ii) 
0

1 1lim
x

x
x→

+ −

Solution (i) We have

15

101

1lim
1x

x
x→

−
−

=
15 10

1

1 1lim
1 1x

x x
x x→

⎡ ⎤− −
÷⎢ ⎥− −⎣ ⎦

=
15 10

1 1

1 1lim lim
1 1x x

x x
x x→ →

⎡ ⎤ ⎡ ⎤− −
÷⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

= 15 (1)14 ÷ 10(1)9   (by the theorem above)

= 15 ÷ 10
3
2

=

(ii) Put y = 1 + x, so that 1y →  as 0.x →

Then
0

1 1lim
x

x
x→

+ −
 =

1

1
lim

–1y

y
y→

−

=

1 1
2 2

1

1lim
1y

y
y→

−
−

=
1 1
21 (1)

2
−

 (by the remark above)  =
1
2
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13.4 Limits of Trigonometric Functions
The following facts (stated as theorems) about functions in general come in handy in
calculating limits of some trigonometric functions.

Theorem 3 Let f and g be two real valued functions with the same domain such that

f (x) ≤ g( x) for all x in the domain of definition, For some a, if both lim
x a→  f(x) and

lim
x a→  g(x) exist, then lim

x a→  f(x) ≤ lim
x a→  g(x). This is illustrated in Fig 13.8.

Theorem 4 (Sandwich Theorem) Let f, g and h be real functions such that
f (x) ≤ g( x) ≤ h(x) for all x in the common domain of definition. For some real number

a, if lim
x a→   f(x) = l = lim

x a→  h(x), then lim
x a→

 g(x) = l. This is illustrated in Fig 13.9.

Given below is a beautiful geometric proof of the following important
inequality relating trigonometric functions.

sincos 1xx
x

< < for 
π0
2

x< < (*)

Fig 13.8

Fig 13.9
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Proof  We know that sin (– x) =  – sin x and cos( – x) = cos x. Hence, it is sufficient

to prove the inequality for 
π0
2

x< < .

In the Fig 13.10, O is the centre of the unit circle such that

the angle AOC is x radians and 0 < x < 
π
2

. Line segments B A and

CD are perpendiculars to OA. Further, join AC. Then
Area of OAC∆ < Area of sector OAC < Area of ∆ OAB.

i.e., 21 1OA.CD .π.(OA) OA.AB
2 2π 2

x
< < .

i.e., CD < x . OA < AB.
From ∆ OCD,

sin x = 
CD
OA

(since OC = OA) and hence CD = OA sin x. Also  tan x =
AB
OA

and

hence AB = OA. tan x. Thus
OA sin x < OA. x < OA. tan x.

Since length OA is positive, we have
sin x < x < tan x.

Since 0 < x <
π
2 , sinx is positive and thus by dividing throughout by sin x, we have

1<
1

sin cos
x

x x
< . Taking reciprocals throughout, we have

sincos 1xx
x

< <

which complete the proof.
Proposition 5 The following are two important limits.

(i) 
0

sinlim 1
x

x
x→

= . (ii) 
0

1 coslim 0
x

x
x→

−
= .

Proof (i) The  inequality in (*) says that the function sin x
x

is sandwiched between the

function cos x and the constant function which takes value 1.

Fig 13.10
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Further, since 0
lim
x→  cos x = 1, we see that the proof of (i) of the theorem is

complete by sandwich theorem.

To prove (ii), we recall the trigonometric identity 1 – cos x = 2 sin2
2
x⎛ ⎞

⎜ ⎟
⎝ ⎠

.

Then

0

1 coslim
x

x
x→

−
 =

2

0 0

2sin sin
2 2lim lim .sin

2
2

x x

x x
x

xx→ →

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠= ⎜ ⎟

⎝ ⎠

=
0 0

sin
2lim .limsin 1.0 0

2
2

x x

x
x

x→ →

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠ = =⎜ ⎟

⎝ ⎠

Observe that we have implicitly used the fact that 0x →  is equivalent to 0
2
x
→ . This

may be justified by putting y = 
2
x

.

Example 4 Evaluate: (i) 
0

sin 4lim
sin 2x

x
x→

(ii) 
0

tanlim
x

x
x→

Solution (i)
0

sin 4lim
sin 2x

x
x→ 0

sin 4 2lim . .2
4 sin 2x

x x
x x→

⎡ ⎤= ⎢ ⎥⎣ ⎦

= 
0

sin 4 sin 22.lim
4 2x

x x
x x→

⎡ ⎤ ⎡ ⎤÷⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= 
4 0 2 0

sin 4 sin 22. lim lim
4 2x x

x x
x x→ →

⎡ ⎤ ⎡ ⎤÷⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= 2.1.1 = 2 (as x → 0, 4x → 0 and 2x → 0)
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(ii) We have  
0

tanlim
x

x
x→

 =
0

sinlim
cosx

x
x x→

 = 
0 0

sin 1lim . lim
cosx x

x
x x→ →

 = 1.1 = 1

A general rule that needs to be kept in mind while evaluating limits is the following.

Say, given that the limit  
( )
( )

lim
x a

f x
g x→  exists and we want to evaluate this. First we check

the value of f (a)  and g(a). If both are 0, then we see if we can get the factor which
is causing the terms to vanish, i.e., see if we can write f(x) = f1 (x) f2(x) so that
f1 (a) = 0 and f2 (a) ≠ 0. Similarly, we write g(x) = g1 (x) g2(x), where g1(a) = 0 and
g2(a) ≠ 0. Cancel out the common factors from f(x) and g(x) (if possible) and write

( )
( )

( )
( )

f x p x
g x q x

= , where q(x) ≠ 0.

Then
( )
( )

( )
( )

lim
x a

f x p a
g x q a→

= .

EXERCISE 13.1

Evaluate the following limits in Exercises 1 to 22.

1. 3
lim 3
x

x
→

+ 2. π

22lim
7x

x
→

⎛ ⎞−⎜ ⎟
⎝ ⎠

3.
2

1
limπ
r

r
→

4.
4

4 3lim
2x

x
x→

+
−

5.
10 5

1

1lim
1x

x x
x→ −

+ +
−

6. ( )5
0

1 1
lim
x

x
x→

+ −

7.  
2

22

3 10lim
4x

x x
x→

− −
−

8.
4

23

81lim
2 5 3x

x
x x→

−
− −

9.
0

lim
1x

ax b
cx→

+
+

10. 

1
3

11
6

1lim
1

z

z

z
→

−

−
11.

2

21
lim , 0
x

ax bx c a b c
cx bx a→

+ +
+ + ≠

+ +

12. 
2

1 1
2lim
2x

x
x→−

+

+
13.

0

sinlim
x

ax
bx→

14.  
0

sinlim , , 0
sinx

ax a b
bx→

≠
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15. 
( )
( )π

sin π
lim

π πx

x
x→

−
− 16.

0

coslim
πx

x
x→ −

17.
0

cos 2 1lim
cos 1x

x
x→

−
−

18. 
0

coslim
sinx

ax x x
b x→

+
19. 0

lim sec
x

x x
→

20.  
0

sinlim , , 0
sinx

ax bx a b a b
ax bx→

+
+ ≠

+
, 21. 0

lim (cosec cot )
x

x x
→

−

22.  π
2

tan 2lim π
2

x

x

x→ −

23.  Find ( )
0

lim
x

f x
→

 and ( )
1

lim
x

f x
→

, where ( ) ( )
2 3, 0

3 1 , 0
x x

f x
x x
+ ≤⎧

= ⎨ + >⎩

24.  Find ( )
1

lim
x

f x
→

, where ( )
2

2

1, 1

1, 1

x x
f x

x x

⎧ − ≤⎪= ⎨
− − >⎪⎩

25.  Evaluate ( )
0

lim
x

f x
→ , where ( )

| | , 0

0, 0

x x
f x x

x

⎧ ≠⎪= ⎨
⎪ =⎩

26.  Find ( )
0

lim
x

f x
→

, where ( )
, 0

| |
0, 0

x x
xf x

x

⎧ ≠⎪= ⎨
⎪ =⎩

27.  Find ( )
5

lim
x

f x
→ , where ( ) | | 5f x x= −

28.  Suppose ( )
, 1

4, 1
, 1

a bx x
f x x

b ax x

+ <⎧
⎪= =⎨
⎪ − >⎩

and if 
1

lim
x→

f (x) = f (1) what are possible values of a and b?
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29. Let a1, a2, . . ., an be fixed real numbers and define a function

( ) ( ) ( ) ( )1 2 ... nf x x a x a x a= − − − .

What is 
1

lim
x a→

(x) ? For some a ≠ a1, a2, ..., an, compute lim
x a→  f (x).

30. If  ( )
1, 0

0, 0
1, 0

x x
f x x

x x

⎧ + <
⎪= =⎨
⎪ − >⎩

.

For what value (s) of a does lim
x a→ f (x) exists?

31. If the function f(x) satisfies 
( )

21

2
lim π

1x

f x
x→

−
=

−
, evaluate ( )

1
lim
x

f x
→

.

32.  If ( )
2

3

, 0
, 0 1

, 1

mx n x
f x nx m x

nx m x

⎧ + <
⎪

= + ≤ ≤⎨
⎪ + >⎩

. For what integers m and n does both ( )
0

lim
x

f x
→

and ( )
1

lim
x

f x
→ exist?

13.5  Derivatives
We have seen in the Section 13.2, that by knowing the position of a body at various
time intervals it is possible to find the rate at which the position of the body is changing.
It is of very general interest to know a certain parameter at various instants of time and
try to finding the rate at which it is changing. There are several real life situations
where such a process needs to be carried out. For instance, people maintaining a
reservoir need to know when will a reservoir overflow knowing the depth of the water
at several instances of time, Rocket Scientists need to compute the precise velocity
with which the satellite needs to be shot out from the rocket knowing the height of the
rocket at various times. Financial institutions need to predict the changes in the value of
a particular stock knowing its present value. In these, and many such cases it is desirable
to know how a particular parameter is changing with respect to some other parameter.
The heart of the matter is derivative of a function at a given point in its domain
of definition.


